Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 405(3): 161-165, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552610

RESUMO

The activity of neuronal Kv7.2/Kv7.3 channels is critically dependent on PIP2 and finely modulated by cholesterol. Here, we report the crosstalk between cholesterol and PIP2 in the regulation of Kv7.2/Kv7.3 channels. Our results show that currents passing through Kv7.2/Kv7.3 channels in cholesterol-depleted cells, by acute application of methyl-ß-cyclodextrin (MßCD), were less sensitive to PIP2 dephosphorylation strategies than those of control cells, suggesting that cholesterol depletion enhances the Kv7.2/Kv7.3-PIP2 interaction. In contrast, the sensitivity of Kv7.2/Kv7.3 channels to acute membrane cholesterol depletion by MßCD was not altered in mutant channels with different apparent affinities for PIP2.


Assuntos
Colesterol
2.
Biophys J ; 120(11): 2287-2295, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864789

RESUMO

Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows the characterization of spatial and temporal properties of biological structures and mechanisms. In this work, we developed an in silico single-molecule FRET methodology to study the dynamics of fluorophores inside lipid rafts. We monitored the fluorescence of a single acceptor molecule in the presence of several donor molecules. By looking at the average fluorescence, we selected events with single acceptor and donor molecules, and we used them to determine the raft size in the range of 5-16 nm. We conclude that our method is robust and insensitive to variations in the diffusion coefficient, donor density, or selected fluorescence threshold.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Simulação por Computador , Microdomínios da Membrana , Nanotecnologia
3.
Br J Pharmacol ; 177(11): 2456-2465, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060896

RESUMO

In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.


Assuntos
Colesterol , Casamento , Membrana Celular , Homeostase
4.
Biochim Biophys Acta Biomembr ; 1860(5): 1242-1251, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29474891

RESUMO

Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-ß-cyclodextrin (MßCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MßCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.


Assuntos
Colesterol/fisiologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
5.
Pflugers Arch ; 467(8): 1699-709, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25204428

RESUMO

Voltage-gated, CaV2.3 calcium channels and neurokinin-1 (NK1) receptors are both present in nuclei of the central nervous system. When transiently coexpressed in human embryonic kidney (HEK) 293 cells, CaV2.3 is primarily inhibited during strong, agonist-dependent activation of NK1 receptors. NK1 receptors localize to plasma membrane rafts, and their modulation by Gq/11 protein-coupled signaling is sensitive to plasma membrane cholesterol. Here, we show that inhibition of CaV2.3 by NK1 receptors is attenuated following methyl-ß-cyclodextrin (MBCD)-mediated depletion of membrane cholesterol. By contrast, inhibition of CaV2.3 was unaffected by intracellular diffusion of caveolin-1 scaffolding peptide or by overexpression of caveolin-1. Interestingly, MΒCD treatment had no effect on the macroscopic biophysical properties of CaV2.3, though it significantly decreased whole-cell membrane capacitance. Our data indicate that (1) cholesterol supports at least one component of the NK1 receptor-linked signaling pathway that inhibits CaV2.3 and (2) caveolin-1 is dispensable within this pathway. Our findings suggest that NK1 receptors reside within non-caveolar membrane rafts and that CaV2.3 resides nearby but outside the rafts. Raft-dependent modulation of CaV2.3 could be important in the physiological and pathophysiological processes in which these channels participate, including neuronal excitability, synaptic plasticity, epilepsy, and chronic pain.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Receptor Cross-Talk , Receptores da Neurocinina-1/metabolismo , Animais , Canais de Cálcio Tipo R/genética , Caveolina 1/genética , Células HEK293 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Potenciais da Membrana , Coelhos , Ratos , Receptores da Neurocinina-1/genética , Transfecção , beta-Ciclodextrinas/farmacologia
6.
Biochim Biophys Acta ; 1830(10): 4650-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23711511

RESUMO

BACKGROUND: Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS: J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS: ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS: Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE: ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores Purinérgicos P2X7/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Transporte de Íons , Macrófagos/enzimologia , Camundongos
7.
Mol Pharmacol ; 77(2): 202-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19805509

RESUMO

The voltage-activated T-type calcium channel (Ca(V)3.2) and the G protein-coupled neurokinin 1 (NK1) receptor are expressed in peripheral tissues and in central neurons, in which they participate in diverse physiological processes, including neurogenic inflammation and nociception. In the present report, we demonstrate that recombinant Ca(V)3.2 channels are reversibly inhibited by NK1 receptors when both proteins are transiently coexpressed in human embryonic kidney 293 cells. We found that the voltage-dependent macroscopic properties of Ca(V)3.2 currents were unaffected during NK1 receptor-mediated inhibition. However, inhibition was attenuated in cells coexpressing either the dominant-negative Galpha(q) Q209L/D277N or the regulator of G protein signaling (RGS) proteins 2 (RGS2) and 3T (RGS3T), which are effective antagonists of Galpha(q/11). By contrast, inhibition was unaffected in cells coexpressing human rod transducin (Galpha(t)), which buffers Gbetagamma. Channel inhibition was blocked by 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and bisindolylmaleimide I, selective inhibitors of phospholipase Cbeta and protein kinase C (PKC), respectively. Inhibition was occluded by application of the PKC activator phorbol-12-myristate-13-acetate. Altogether, these data indicate that NK1 receptors inhibit Ca(V)3.2 channels through a voltage-independent signaling pathway that involves Galpha(q/11), phospholipase Cbeta, and PKC. Our results provide novel evidence regarding the mechanisms underlying T-type calcium channel modulation by G protein-coupled receptors. Functional coupling between Ca(V)3.2 channels and NK1 receptors may be relevant in neurogenic inflammation, neuronal rhythmogenesis, nociception, and other physiological processes.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteína Quinase C/fisiologia , Receptores da Neurocinina-1/fisiologia , Proteínas Recombinantes/antagonistas & inibidores , Canais de Cálcio Tipo T/fisiologia , Linhagem Celular , Humanos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/fisiologia
8.
Clin Exp Pharmacol Physiol ; 36(7): 619-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19594551

RESUMO

1. In the present study, we investigated the series of events involved in the contraction of tracheal smooth muscle induced by the re-addition of Ca(2+) in an in vitro experimental model in which Ca(2+) stores had been depleted and their refilling had been blocked by thapsigargin. 2. Mean (+/-SEM) contraction was diminished by: (i) inhibitors of store-operated calcium channels (SOCC), namely 100 micromol/L SKF-96365 and 100 micromol/L 1-(2-trifluoromethylphenyl) imidazole (to 66.3 +/- 4.4 and 41.3 +/- 5.2% of control, respectively); (ii) inhibitors of voltage-gated Ca(2+) channels Ca(V)1.2 channels, namely 1 micromol/L nifedipine and 10 micromol/L verapamil (to 86.2 +/- 3.4 and 76.9 +/- 5.9% of control, respectively); and (iii) 20 micromol/L niflumic acid, a non-selective inhibitor of Ca(2+)-dependent Cl(-) channels (to 41.1 +/- 9.8% of control). In contrast, contraction was increased 2.3-fold by 100 nmol/L iberiotoxin, a blocker of the large-conductance Ca(2+)-activated K(+) (BK) channels. 3. Furthermore, contraction was significantly inhibited when Na(+) in the bathing solution was replaced by N-methyl-D-glucamine (NMDG(+)) to 39.9 +/- 7.2% of control, but not when it was replaced by Li(+) (114.5 +/- 24.4% of control). In addition, when Na(+) had been replaced by NMDG(+), contractions were further inhibited by both nifedipine and niflumic acid (to 3.0 +/- 1.8 and 24.4 +/- 8.1% of control, respectively). Nifedipine also reduced contractions when Na(+) had been replaced by Li(+) (to 10.7 +/- 3.4% to control), the niflumic acid had no effect (116.0 +/- 4.5% of control). 4. In conclusion, the data of the present study demonstrate the roles of SOCC, BK channels and Ca(V)1.2 channels in the contractions induced by the re-addition of Ca(2+) to the solution bathing guinea-pig tracheal rings under conditions of Ca(2+)-depleted sarcoplasmic reticulum and inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase. The contractions were highly dependent on extracellular Na(+), suggesting a role for SOCC in mediating the Na(+) influx.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Contração Muscular/fisiologia , Sódio/fisiologia , Traqueia/fisiologia , Animais , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/fisiologia , Cobaias , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Sódio/farmacologia , Traqueia/efeitos dos fármacos
9.
Am J Physiol Lung Cell Mol Physiol ; 293(1): L191-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17449794

RESUMO

Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.


Assuntos
Histamina/farmacologia , Canais Iônicos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Animais , Separação Celular , Fluorescência , Cobaias , Imidazóis/farmacologia , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Contração Isométrica/efeitos dos fármacos , Masculino , Meglumina/farmacologia , Modelos Biológicos , Sódio/farmacologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
10.
Am J Physiol Cell Physiol ; 290(2): C524-38, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16135543

RESUMO

Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This approach allowed us to study pH(cyt) in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'(a)), maximum ratio (R(max)), and minimum ratio (R(min)) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pH(cyt) of each region. These studies indicated that glial cells exhibit pH(cyt) heterogeneities and pH(cyt) oscillations in both the absence and presence of physiological HCO(3)(-). The amplitude and frequency of the pH(cyt) oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na(+)/H(+) exchanger- and HCO(3)(-)-based H(+)-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pH(cyt) oscillations in glial cells.


Assuntos
Citoplasma/química , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência/métodos , Neuroglia/química , Animais , Benzopiranos/metabolismo , Bicarbonatos/química , Calibragem , Linhagem Celular , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Naftóis/metabolismo , Neuroglia/citologia , Ratos , Rodaminas/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo
11.
Environ Toxicol Chem ; 24(8): 2037-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16152977

RESUMO

An environmental survey of several rivers of the southern Huasteca area of Mexico revealed high concentrations of manganese (Mn) and the presence of DDT in the sediments and pore water. Therefore, acute (48-h) toxicities of Mn and DDT were assessed both independently and as a combination on 24-h-old neonates of Daphnia magna Strauss and Lecane quadridentata Ehrenberg. Daphnia magna showed high sensitivity to both toxicants, whereas L. quadridentata was highly resistant to DDT and less susceptible to Mn. For D. magna, the Mn and DDT coexposure was significantly more toxic than any of the singly tested compounds. When D. magna was exposed to sediment pore water, no association was found between the Mn content in the samples and the observed toxicity. Preliminary particle analysis of pore water showed different compounds of Mn, which apparently were not in bioavailable form.


Assuntos
DDT/toxicidade , Invertebrados/efeitos dos fármacos , Manganês/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Tamanho da Partícula
12.
J Neurobiol ; 61(3): 309-16, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15389693

RESUMO

We analyzed the contribution of calcium (Ca2+)-induced Ca2+ release to somatic secretion in serotonergic Retzius neurons of the leech. Somatic secretion was studied by the incorporation of fluorescent dye FM1-43 upon electrical stimulation with trains of 10 impulses and by electron microscopy. Quantification of secretion with FM1-43 was made in cultured neurons to improve optical resolution. Stimulation in the presence of FM1-43 produced a frequency-dependent number of fluorescent spots. While a 1-Hz train produced 19.5+/-5.0 spots/soma, a 10-Hz train produced 146.7+/-20.2 spots/soma. Incubation with caffeine (10 mM) to induce Ca2+ release from intracellular stores without electrical stimulation and external Ca2+, produced 168+/-21.7 spots/soma. This staining was reduced by 49% if neurons were preincubated with the Ca2+- ATPase inhibitor thapsigargin (200 nM). Moreover, in neurons stimulated at 10 Hz in the presence of ryanodine (100 microM) to block Ca2+-induced Ca2+ release, FM1-43 staining was reduced by 42%. In electron micrographs of neurons at rest or stimulated at 1 Hz in the ganglion, endoplasmic reticulum lay between clusters of dense core vesicles and the plasma membrane. In contrast, in neurons stimulated at 20 Hz, the vesicle clusters were apposed to the plasma membrane and flanked by the endoplasmic reticulum. These results suggest that Ca2+-induced Ca2+ release produces vesicle mobilization and fusion in the soma of Retzius neurons, and supports the idea that neuronal somatic secretion shares common mechanisms with secretion by excitable endocrine cells.


Assuntos
Cálcio/farmacologia , Neurônios/efeitos dos fármacos , Serotonina/metabolismo , Análise de Variância , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Sanguessugas , Magnésio/farmacologia , Microscopia Eletrônica de Transmissão/métodos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Neurônios/ultraestrutura , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Rianodina/farmacologia , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...